Series SSO

कोड नं. 56/2/G

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 15 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 26 questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

56/2/G 1 P.T.O.

सामान्य निर्देश:

- सभी प्रश्न अनिवार्य हैं। (i)
- प्रश्न संख्या 1 से 5 तक अति लघ्-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक है। (ii)
- प्रश्न संख्या 6 से 10 तक लघ्-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 2 अंक हैं। (iii)
- प्रश्न संख्या 11 से 22 तक भी लघ्-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 3 अंक हैं। (iv)
- प्रश्न संख्या 23 मूल्याधारित प्रश्न है और इसके लिए 4 अंक हैं। (v)
- प्रश्न संख्या 24 से 26 तक दीर्घ-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 5 अंक हैं। (vi)
- यदि आवश्यकता हो, तो लॉग टेबलों का प्रयोग करें । कैल्कुलेटरों के उपयोग की अनुमति (vii) नहीं है ।

General Instructions:

- (i)**All** questions are compulsory.
- Questions number 1 to 5 are very short answer questions and carry (ii) 1 mark each.
- (iii) Questions number 6 to 10 are short answer questions and carry 2 marks each.
- (iv)Questions number 11 to 22 are also short answer questions and carry 3 marks each.
- (v)Question number 23 is a value based question and carry 4 marks.
- (vi) Questions number 24 to 26 are long answer questions and carry 5 marks each.
- Use log tables, if necessary. Use of calculators is **not** allowed. (vii)
- जिंक संक्रमण तत्त्व के रूप में क्यों नहीं जाता है ? 1. 1 Why is zinc not regarded as a transition element?
- 1 मोल Ag+ को Ag में अपचयित करने में फैराडे में कितना आवेश (चार्ज) आवश्यक होता 2. है ? How much charge in Faraday is required for the reduction of 1 mol of Ag+

56/2/G

Get More Learning Materials Here:

1

to Ag?

1

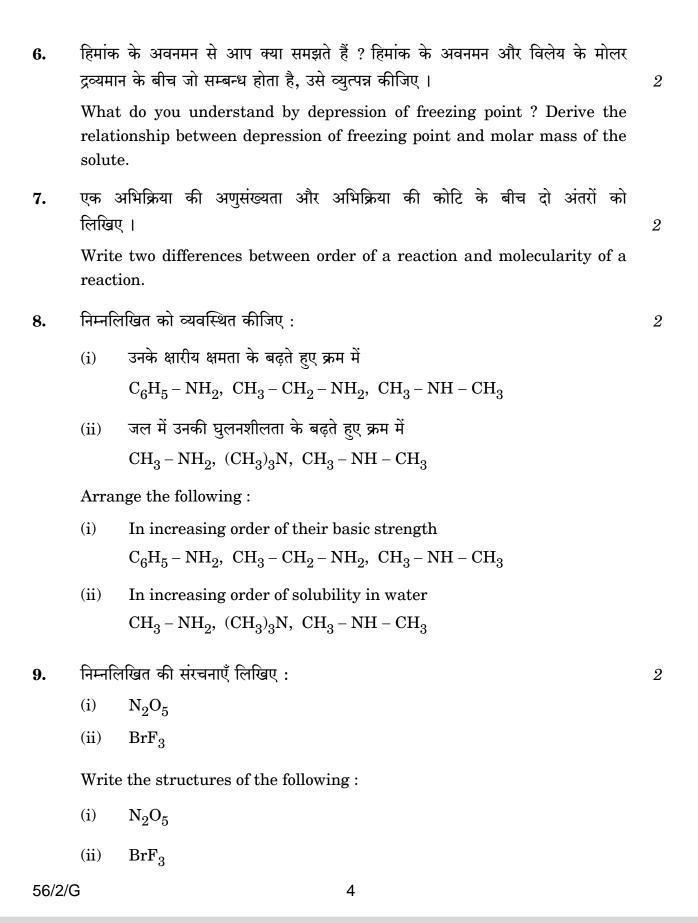
1

$$\begin{array}{c} {\rm CH_3} \\ | \\ {\rm C_6H_5-CH_2-Br} \end{array}$$
 और ${\rm C_6H_5-CH-Br}$

Which would undergo $S_N \mathbf{1}$ reaction faster in the following pair :

$$$^{\rm CH_3}_{\rm 1}$ \\ {\rm C_6H_5-CH_2-Br}$ and ${\rm C_6H_5-CH-Br}$$$

- 4. धूएँ की परिक्षेपित प्रावस्था और परिक्षेपण माध्यम लिखिए।
 Write the dispersed phase and dispersion medium of smoke.
- 5. दिए गए यौगिक का आई.यू.पी.ए.सी. नाम लिखिए :


$$\begin{array}{c}
\text{OH} \\
\text{CH}_{3}
\end{array}$$

Write the IUPAC name of the given compound:

56/2/G

3

P.T.O.

10. कॉम्प्लेक्स $[Co(en)_2Cl_2]^+$ का आई.यू.पी.ए.सी. नाम लिखिए । इस कॉम्प्लेक्स द्वारा किस प्रकार की समावयवता दिखलाई जाती है ?

अथवा

आई.यू.पी.ए.सी. पद्धति के अनुसार निम्नलिखित उपसहसंयोजन यौगिकों के लिए सूत्रों को लिखिए:

- (i) टेट्राकार्बोनिलनिकल(0)
- (ii) पोटैशियम टेट्रासाइनाइडोफेरेट(II)

Write down the IUPAC name of the complex $[Co(en)_2Cl_2]^+$. What type of isomerism is shown by this complex ?

OR

Using IUPAC norms write the formulae for the following coordination compounds:

- (i) Tetracarbonylnickel(0)
- (ii) Potassium tetracyanidoferrate(II)
- 11. निम्नलिखित अभिक्रियाओं में प्रत्येक के मुख्य उत्पाद की संरचनाएँ लिखिए :
 - (i) $CH_3 CH = CH_2 \xrightarrow{(i) B_2H_6} \overline{(ii) H_2O_2/OH}$
 - (ii) $CH_3 CH_2 CH CH_3 + KOH (aq.)$ Br

56/2/G 5 P.T.O.

2

2

Write the structures of the major product in each of the following reactions:

(i)
$$CH_3 - CH = CH_2 \xrightarrow{(i) B_2H_6} \frac{(i) B_2H_6}{(ii) H_2O_2 / OH^-}$$

(ii)
$$CH_3 - CH_2 - CH - CH_3 + KOH (aq.)$$

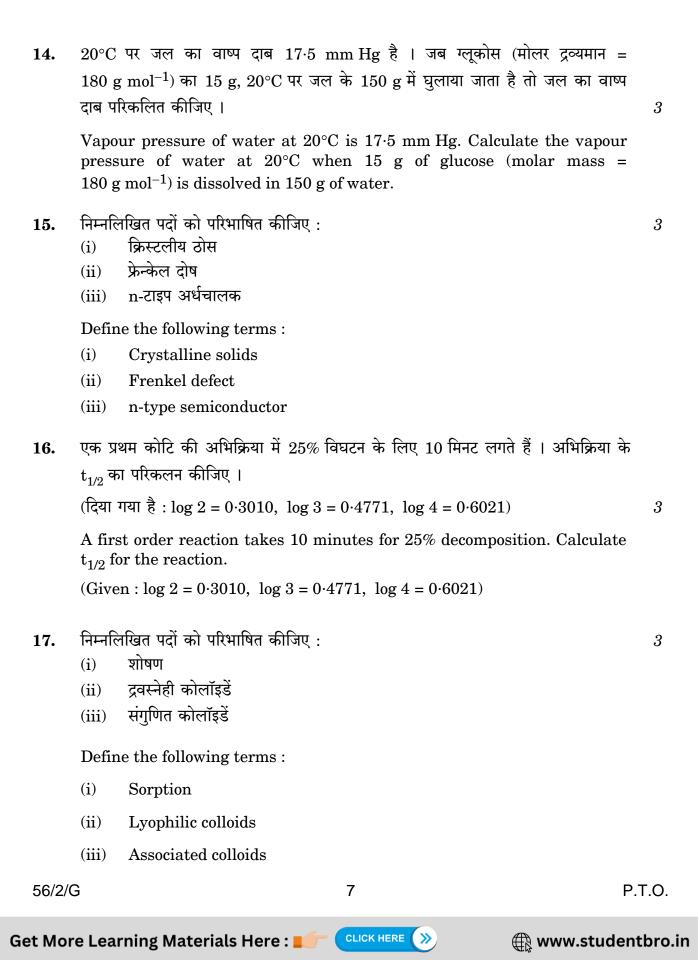
Br

(iii)
$$\stackrel{\text{Br}}{ }$$
 + Mg $\stackrel{\text{dry ether}}{ }$

- निम्नलिखित रूपांतरण आप कैसे करेंगे : **12.**
 - फ़ीनॉल को 2-हाइडॉक्सीऐसीटोफीनोन में (i)
 - एथिल क्लोराइड को मेथॉक्सी एथेन में (ii)
 - ऐसीटोन को 2-मेथिलप्रोपैन-2-ऑल में (iii)

How do you convert the following:

- (i) Phenol to 2-hydroxyacetophenone
- (ii) Ethyl chloride to methoxy ethane
- (iii) Acetone to 2-methylpropan-2-ol
- निम्नलिखित के लिए कारण दीजिए: **13.**
 - ऐनिलीन फ्रीडेल क्राफ्ट्स अभिक्रिया नहीं करता है। (i)
 - p-मेथिलऐनिलीन अपेक्षाकृत p-नाइट्रोऐनिलीन से अधिक क्षारीय है। (ii)
 - ऑर्थों और पैरा यौगिकों के बनने से पहले ऐनिलीन में $-NH_2$ ग्रुप का ऐसीटिलीकरण (iii) किया जाता है।


Give reasons for the following:

- (i) Aniline does not undergo Friedel – Crafts reaction.
- (ii) p-methylaniline is more basic than p-nitroaniline.
- Acetylation of NH₂ group is done in aniline before preparing its (iii) ortho and para compounds.

56/2/G 6

3

ज़िर्कोनियम के परिष्करण के लिए जो विधि काम में लाई जाती है उसके पीछे के 18. (i) सिद्धान्त को बताइए। आयरन के निष्कर्षण में CO की भूमिका क्या है ? (ii) 'कॉपर मैटे' क्या है ? (iii) 3 Indicate the principle behind the method used for the refining of (i) Zirconium. What is the role of CO in the extraction of iron? (ii) What is 'copper matte'? (iii) निम्नलिखित बह्लकों के एकलकों की संरचनाएँ और उनके नाम लिखिए : 19. 3 पॉलिस्टाइरीन (i) नाइलॉन 6,6 (ii) टेरीलीन (iii) अथवा संरचना के आधार पर बहलकों के वर्गीकरण का वर्णन कीजिए। 3 Write the names and structures of the monomers of the following polymers: (i) Polystyrene (ii) Nylone 6,6 (iii) Terylene OR Describe the classification of polymers on the basis of structure. जब D-ग्लूकोस HCN से अभिक्रिया करता है तब प्राप्त उत्पाद को लिखिए। 20. (i) प्रोटीनों की α -हेलिक्स संरचना को किस प्रकार का आबन्ध स्थिरता प्रदान करता है ? (ii) विटामिन B_{12} की कमी से जो बीमारी होती है, उसका नाम लिखिए । (iii) 3 56/2/G 8

- (i) Write the product obtained when D-glucose reacts with HCN.
- (ii) What type of bonding stabilizes the α -helix structure of proteins?
- (iii) Write the name of the disease caused by the deficiency of vitamin $B_{12}. \\$

21. निम्नलिखित के लिए कारण बताइए :

3

3

P.T.O.

- (i) PH_3 की अपेक्षा NH_3 का क्वथनांक उच्चतर है ।
- (ii) H_2S की अपेक्षा H_2Te अधिक अम्लीय है ।
- (iii) रखे रहने पर क्लोरीन जल का पीलापन घटने लगता है।

Give reasons for the following:

- (i) NH₃ has a higher boiling point than PH₃.
- (ii) H_2 Te is more acidic than H_2 S.
- (iii) Chlorine water on standing loses its yellow colour.

22. निम्नलिखित कॉम्प्लेक्सों के आकार और उनकी संकरण अवस्था लिखिए:

- (a) (i) $[FeF_6]^{3-}$
 - (ii) $[Ni(CO)_4]$

(परमाणु क्रमांक : Fe = 26, Ni = 28)

- (b) CN और CO में से, कौन-सा लिगैण्ड धातु के साथ अधिक स्थायी कॉम्प्लेक्स बनाता है और क्यों ?
- (a) Write the hybridization and shape of the following complexes:
 - (i) $[FeF_6]^{3-}$

Get More Learning Materials Here:

(ii) $[Ni(CO)_4]$

(Atomic number : Fe = 26, Ni = 28)

(b) Out of CN⁻ and CO, which ligand forms more stable complex with metal and why?

56/2/G 9

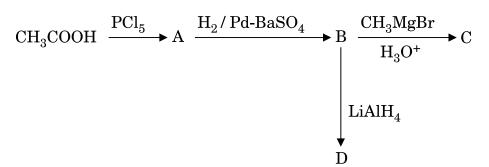
23. एक प्रसिद्ध स्कूल के प्रिंसिपल श्री राय ने मधुमेह और अवसाद (उदासी) जैसे गंभीर विषय पर विचार के लिए एक सेमिनार का आयोजन किया जिसमें उन्होंने बच्चों के माता-पिता तथा अन्य प्रिंसिपलों को आमंत्रित किया । यह निर्णय किया गया कि सड़े हुए भोजन स्कूलों में प्रतिबन्धित किए जाएँ और स्वास्थ्यवर्धक भोज्य पदार्थ जैसे सूप, लस्सी, दूध, आदि स्कूलों की कैंटीनों में उपलब्ध कराए जाएँ । उन्होंने यह भी निर्णय लिया कि स्कूलों में रोज प्रातःकालीन ऐसेम्बली के समय बच्चों को अनिवार्य रूप से आधा घंटे का शारीरिक श्रम कराया जाए । छः माह के पश्चात्, श्री राय ने अधिकतर स्कूलों में फिर निरीक्षण कराया और बच्चों के स्वास्थ्य में अद्भुत सुधार पाया गया ।

उपर्युक्त प्रकरण को पढ़ने के बाद, निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (i) श्री राय द्वारा किन मूल्यों (कम-से-कम दो) को दर्शाया गया है ?
- (ii) एक विद्यार्थी के रूप में, आप इन मूल्यों के प्रति कैसे जागरूकता फैलाएँगे ?
- (iii) शांतिकारी (प्रशान्तक) क्या होते हैं ? एक उदाहरण दीजिए ।
- (iv) ऐस्पर्टैम का उपयोग ठंडे भोजन और पेय पदार्थों तक ही सीमित क्यों रखा जाता है ?

Mr. Roy, the principal of one reputed school organized a seminar in which he invited parents and principals to discuss the serious issue of diabetes and depression in students. They all resolved this issue by strictly banning junk food in schools and introducing healthy snacks and drinks like soup, lassi, milk, etc. in school canteens. They also decided to make compulsory half an hour of daily physical activities for the students in the morning assembly. After six months, Mr. Roy conducted the health survey in most of the schools and discovered a tremendous improvement in the health of the students.

After reading the above passage, answer the following questions:


- (i) What are the values (at least two) displayed by Mr. Roy?
- (ii) As a student, how can you spread awareness about this issue?
- (iii) What are tranquilizers? Give an example.
- (iv) Why is the use of aspartame limited to cold foods and drinks?

56/2/G 10

Get More Learning Materials Here:

24. (a) निम्नलिखित अभिक्रियाओं में A, B, C और D की संरचनाएँ लिखिए :

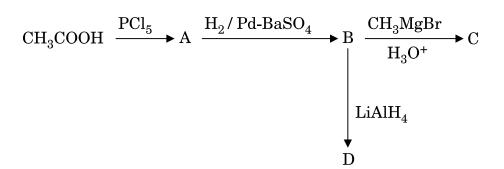
- (b) निम्नलिखित के बीच अंतर कीजिए:
 - (i) $CH_3 CO CH_2CH_3$ और $CH_3 CH_2 CH_2 CHO$
 - (ii) एथेनैल और एथेनोइक अम्ल
- (c) 4-क्लोरोपेन्टेन-2-ओन की संरचना लिखिए।

5

अथवा

- (a) जब प्रोपेनैल (${
 m CH}_3$ ${
 m CH}_2$ ${
 m CHO}$) निम्नलिखित अभिकारकों से अभिक्रिया करता है तो प्राप्त मुख्य उत्पादों की संरचनाएँ लिखिए :
 - (i) Zn Hg/सान्द्र HCl
 - (ii) $H_2N OH/H^+$
 - (iii) HCN
- (b) नाभिकस्नेही संकलन अभिक्रियाओं के प्रति निम्नलिखित की घटती हुई अभिक्रियाशीलता के क्रम में व्यवस्थित कीजिए:

$$\mathrm{HCHO},\ \mathrm{CH}_3-\mathrm{CO}-\mathrm{CH}_3,\ \mathrm{CH}_3-\mathrm{CHO}$$


(c) निम्नलिखित यौगिकों के युग्म में अंतर करने के लिए एक सामान्य रासायनिक जाँच दीजिए:

$$\mathrm{C_6H_5CHO}$$
 और $\mathrm{C_6H_5-CO-CH_3}$

5

56/2/G 11 P.T.O.

(a) Write the structures of A, B C, and D in the following reactions:

- (b) Distinguish between the following:
 - (i) $CH_3 CO CH_2 CH_3$ and $CH_3 CH_2 CH_2 CHO$
 - (ii) Ethanal and ethanoic acid
- (c) Write the structure of 4-chloropentan-2-one.

OR

- (a) Write the structures of the main products when propanal $(CH_3-CH_2-CHO)\ reacts\ with\ the\ following\ reagents:$
 - (i) Zn Hg/conc. HCl
 - (ii) $H_2N OH/H^+$
 - (iii) HCN
- (b) Arrange the following in the decreasing order of their reactivity towards nucleophilic addition reaction:

HCHO,
$$CH_3 - CO - CH_3$$
, $CH_3 - CHO$

(c) Give a simple chemical test to distinguish between the following pairs of compounds:

$$\mathrm{C_6H_5CHO}$$
 and $\mathrm{C_6H_5-CO-CH_3}$

56/2/G 12

$$Mg\left(s\right)\ \middle|\ Mg^{2+}\left(0.01\ M\right)\ \middle|\ Ag^{+}\left(0.0001\ M\right)\ \middle|\ Ag\left(s\right)$$

दिया गया है :
$$E^0_{(Mg^{2+}/Mg)} = -2.37 \text{ V}, E^0_{(Ag^{+}/Ag)} = +0.80 \text{ V}.$$

अथवा

(a) ${
m CH_3COOH}$ के $0.001~{
m mol~L^{-1}}$ विलयन की चालकता $4.95\times 10^{-5}~{
m S~cm^{-1}}$ है । इसकी मोलर चालकता और वियोजन-मात्रा (lpha) परिकलित कीजिए । ${
m faull } {
m Turl } {
m faull } {$

$$^0_{\lambda} ({
m CH_3 COO^-}) = 40.9 \ {
m S} \ {
m cm}^2 \ {
m mol}^{-1}.$$

(b) ईंधन सेल क्या है ? अन्य साधारण सेलों की तुलना में इसका एक लाभ लिखिए । 5

Calculate e.m.f. and <G for the following cell at 298 K :

$$Mg\left(s\right)\ \middle|\ Mg^{2+}\left(0.01\ M\right)\ \middle|\ \middle|\ Ag^{+}\left(0.0001\ M\right)\ \middle|\ Ag\left(s\right)$$

Given :
$$E^0_{(Mg^{2+}/Mg)} = -2.37 \text{ V}, \quad E^0_{(Ag^{+}/Ag)} = +0.80 \text{ V}.$$

OR

(a) The conductivity of 0.001 mol L^{-1} solution of CH_3COOH is 4.95×10^{-5} S cm⁻¹. Calculate its molar conductivity and degree of dissociation (α).

Given :
$$\lambda^0(H^+) = 349.6 \ S \ cm^2 \ mol^{-1} \ and$$

$$\lambda^0(CH_3COO^-) = 40.9 \ S \ cm^2 \ mol^{-1}.$$

(b) What is a fuel cell? Write its one advantage over other ordinary cells.

- 26. (a) निम्नलिखित को कारण देते हुए स्पष्ट कीजिए:
 - (i) Eu^{2+} एक प्रबल अपचायक है।
 - (ii) संक्रमण धात्एँ रंगीन यौगिक बनाती हैं।
 - (iii) 3d श्रेणी में Zn की परमाणवीकरण (कणीकरण) एन्थैल्पी सबसे कम है।
 - (b) निम्नलिखित समीकरणों को पूर्ण कीजिए:
 - (i) $\text{KMnO}_4 \xrightarrow{\Delta}$
 - (ii) $Cr_2O_7^{2-} + 14 H^+ + 6 Fe^{2+} \longrightarrow$

5

अथवा

- (a) निम्नलिखित को कारण सहित समझाइए:
 - (i) संक्रमण तत्त्व अंतराकाशी यौगिक बनाते हैं।
 - (ii) $Mn^{3+}(3d^4)$ एक प्रबल उपचायक है जबिक $Cr^{2+}(3d^4)$ एक प्रबल अपचायक है।
 - (iii) संक्रमण धातुओं के हिमांक उच्च होते हैं।
- (b) 'मिश धात्' क्या है ? इसका एक उपयोग लिखिए ।

5

- (a) Account for the following:
 - (i) Eu²⁺ is a strong reducing agent.
 - (ii) Transition metals form coloured compounds.
 - (iii) Zn has lowest enthalpy of atomization in 3d series.
- (b) Complete the following equations:
 - $(i) \hspace{0.5cm} \text{KMnO}_{4} \xrightarrow{\hspace{0.5cm} \Delta}$
 - (ii) $Cr_2O_7^{2-} + 14 H^+ + 6 Fe^{2+} \longrightarrow$

OR

56/2/G 14

- (a) Account for the following:
 - (i) Transition elements form interstitial compounds.
 - (ii) $Mn^{3+}(3d^4)$ is strongly oxidizing whereas $Cr^{2+}(3d^4)$ is strongly reducing.
 - (iii) Transition metals have high melting points.
- (b) What is 'misch metal'? Write its one use.

56/2/G 15

Get More Learning Materials Here:

CHEMISTRY MARKING SCHEME

Guwahati -2015

SET -56/2/G

	<u>5E1 -507</u>						
Sr.	Value points						
No.							
1	Zn : [Ar] 3d ¹⁰ 4s ² / Because of Fully filled d-orbitals in ground state as well as in the oxidized state.						
2	1 F/ 1 Faraday						
3							
[CH ₃						
	$C_6H_5 - CH - Br$						
4	Dispersed phase: Solid, Dispersion medium: Gas		1/2 + 1/2				
5	2,4 – dimethylphenol		1				
6	$\Delta T_f = T_f^0 - T_f$		1				
	The decrease in freezing point of a solvent do	ue to the dissolution of a non-volatile					
	solute in it is called depression in freezing po	pint					
I							
	$\Delta T_f = K_f m$]				
	w /M		1				
	$\Delta T_f = K_f \times \frac{W_2 / M_2}{W_1 / 1000}$						
I	$M_2 = K_f.w_2 \times 1000$						
	$\frac{1012 - \frac{1}{1000}}{\frac{1}{1000}}$						
7	Order	Molecularity	1+1				
I	Sum of powers to which the	The number of reacting species in an					
	concentration terms are raised in rate	elementary reaction.					
	law expression. May also be zero or in fraction	Cannot be zero or fraction.					
	(or any other correct differences)						
		(or any other correct unrerences)					
8	i) C ₆ H ₅ NH ₂ < CH ₃ CH ₂ NH ₂ < CH ₃ NHCH ₃						
	ii) $(CH_3)_3N < CH_3 NHCH_3 < CH_3NH_2$						

10	i) Nick laridabis (athera 1.2 diamina) scholt (III) is n	1+1
10	Dichloridobis(ethane –1,2-diamine)cobalt (III) ion Geometrical Isomerism / cis-trans Isomerism/ optical isomerism	1+1
10	OR i) [Ni (CO)₄] ii) K₂[Fe(CN)₄]	1+1
11	(i) CH ₃ –CH ₂ - CH ₂ OH (ii) CH ₃ -CH ₂ -CH(OH)-CH ₃ (iii) MgBr	1+1+1
12	(i)	1+1+1
	(ii) CH ₃ COCl AnhAlCl ₃ CH ₃ -CH ₂ -Cl + CH ₃ ONa CH ₃ -CH ₂ -O-CH ₃ (iii) CH ₃ -CO-CH ₃ (ii) CH ₃ MgBr H ₃ C-C-OH CH ₃ (Or any other correct method.)	
13	(i) Aniline being a base reacts with AlCl₃(Lewis Acid) to form a salt.	1+1+1
	(ii) —CH ₃ group shows +I – effect(electron releasing group) whereas –	

14	$\frac{\mathbf{p}_1^0 - \mathbf{p}_1}{\mathbf{p}_1^0} = \frac{\mathbf{w}_2 \times \mathbf{M}_1}{\mathbf{M}_2 \times \mathbf{w}_1}$	1
	$\frac{17.5 - P_1}{17.5} = \frac{15/180}{\frac{15}{180} + \frac{150}{18}}$	
	$= \frac{15}{1515}$	1
	= 0.01	
	$17.5 - P_1 = 0.01X 17.5$	1
	$17.5 - 0.175 = P_1$	
	P ₁ = 17.325 mmHg	
15	(i) Crystalline solids – They have definite and regular geometry which extends throughout the crystal .i.e , they have long range order . (ii) Frenkel defect – caused by the dislocation of cation in the crystal lattice.	1+1+1
	(iii) n – type semiconductor – These are obtained due to metal –excess defect or by adding trace amounts of group 15 elements (P, As) to extremely pure silicon or germanium by doping.	
16	$k = 2.303 \log [A_0]$	
	t [A]	1/2
	$k = 2.303 \log 100$	
	10min 75	
	k = <u>2.303 x 0.125</u>	1/2
	10min	
	$k = 0.02879 \text{ min}^{-1}$	1
	$t_{1/2} = \underline{0.693} = \underline{0.693}$ k 0.02879 min ⁻¹	
	k 0.02879 min ⁻	
	t _{1/2} = 24.07min	1
17	i) When both absorption and adsorption take place together, the phenomenon is referred to as Sorption.	1+1+1
	ii)The colloidal dispersion/solution in which the dispersed phase has got an affinity for the dispersion medium / solvent loving.	

18	a)Impure Zr reacts with I ₂ to form volatile ZrI ₄ which when heated at higher	1+1+1
	temperature decomposes to give pure Zr.	
	b)CO acts as a reducing agent.	
	c) It is a mixture of Cu₂S and FeS.	
19		
	(i) Styrene, C ₆ H ₅ –CH=CH ₂ (ii) Adipic Acid HOOC–CH ₂ –CH ₂ –CH ₂ –COOH Hexamethylenediamine H ₂ N–(CH ₂) ₆ –NH ₂ (iii) Ethylene glycol HO-CH ₂ -CH ₂ -OH	1/2 + 1/2
	HOOC—COOH	1/2 + 1/2
	Terephthalic acid	1/2 + 1/2
	(note: half mark for name/s and half mark for structure/s) OR	
19	Linear polymers – Monomeric units join to form long polymeric chains.	1/2 + 1/2
	2. Branched chain polymers - Monomeric units join not only to form long polymeric chains but also branches.	1/2 + 1/2
	3. Three dimensional network polymers or cross-linked polymers- Monomeric units join to form long polymeric chains and cross links.	1/2 + 1/2
20	CN	1+1+1
	HOH₂C-(CHOH)4 –C- OH	
	H	
	(i) Intermelecular II Bonding	
	(ii) Intermolecular H-Bonding. (iii) Pernicious Anaemia.	
21	i) Due to intermolecular H-bonding in ammonia .	1+1+1
	ii) Bond dissociation enthalpy of H—Te bond is lesser than that of H—S bond.	
	iii)Cl ₂ + H ₂ O \longrightarrow HOCl + HCl or Due to the formation of Hydrochloric acid and Hypochlorus acid.	
22	The second of th	1/2 + 1/2
	(a) (i) sp ³ d ² , Octahedral	1/2 + 1/2
	(ii) sp ³ , Tetrahedral	
	(b) CO, because of synergic or back bonding.	1/2 , 1/2
23	(i) Concern for students health, Application of knowledge of chemistry to daily life,	1/2, 1/2
	empathy , caring or any other	1
	(ii) Through posters, nukkad natak in community, social media, play in assembly or	., .,

2.4	l -					1/ 4 2
24					OH	½ x 4=2
	(a)	A-	CH₃COCI B-	CH₃CHO	C- CH3-CH-CH3	
		5				
		D- h) i)On l	CH ₃ CH ₂ OH	יטא/ וי ראיני	OCH-CH-gives vellow not of CHI-whereas	1
	b) i)On heating with NaOH/ I ₂ , CH ₃ COCH ₂ CH ₃ gives yellow ppt of CHI ₃ whereas CH ₃ CH ₂ CH ₂ CHO does not.					1
	į	ii)On ad	lding NaHCO ₃ so		oic acid gives brisk effervescence whereas	1
	·	ethanal	does not.		(Or any other distinguishing test)	
					(Or any other distinguishing test)	
		c) CH ₃ C	OCH ₂ CH(CI)CH ₃			1
					OR	
24					On .	
		(a) (i) C	CH ₃ -CH ₂ -CH ₃			1
		(ii) (CH ₃ -CH ₂ -CH=N-C	DH		1
	OH 					1
		(iii) CH3–CH ₂ –(CH-CN		
		/b\ ''	ICHO YOU CHO	VCII COCII		
			CHO >CH₃CHO heating with Na		OCH ₃ gives yellow ppt of CHI ₃ whereas	1
			5CHO does not.		Section ppe of orn ₃ whereas	1
		0 :	a ana ta i i i	2+3 (5 + 2)	(or any other distinguishing test)	
25			0.059/2 V log [0.059/2 V log [10			1
			X log 10 ⁶	, (10)]		1
	= 3.17-0		•			
	= 3.17-0					4
	= 2.9930 ΔG = -nl					1 ½
			nol ⁻¹ X 2.9930 V			1/2
	= -57764					
	= -577.6	49 kJmo	ol [*]			1
				C	OR .	
25		-	00 Scm ² mol ⁻¹			
			0.001) x 1000	Scm ² mol ⁻¹		1/2
I	= 49 5 9	Scm ² m	∩l ⁻¹			

	= 390.5 Scm ² mol ⁻¹ α = $49.5/390.5$ = 0.127 or 12.7%	1
	b)Which converts energy of combustion of fuels directly into electrical energy. Advantages: high efficiency,pollution free	1
26	(i) +3 oxidation state of Eu is more stable.	1
	(ii) Due to d-d transition / unpaired electrons in d orbitals.	1
	(iii) Due to completely filled d-orbitals which leads to weak metallic bond.	1
	(b) (i) $2KMnO_4 \longrightarrow K_2MnO_4 + O_2 + MnO_2$	1
		1
	(ii) $\operatorname{Cr_2O_7}^{2^-} + 14 \operatorname{H}^+ + 6 \operatorname{Fe}^{2^+} \rightarrow 2 \operatorname{Cr}^{3^+} + 6 \operatorname{Fe}^{3^+} + 7 \operatorname{H_2O}$	1
	OR	
26	(a) (i)because small size atoms like B, C, H,N occupy interstitial sites in the lattice of transition elements.	1
	(ii) Because Cr ³⁺ has the stable t _{2g} ³ configuration whereas Mn ²⁺ has stable 3d ⁵ configuration(half filled).	1
	(iii) Due to involvement of d-electrons in metallic bonding.	1
	(b) Misch metal is an alloy which consist of a lanthanoid metal(95%) and iron (5%) and traces of S,C,Ca and Al.	1
	USE- It is used in Mg-based alloy to produce bullets, shell and lighter – flint.	1